Multi-probe study on Charge Transport Transitions of PrBaCo₂O_{5.5+x}

Ping Miao^{1,2}, Xiaohuan Lin³, Sanghyun Lee¹, Yoshihisa Ishikawa¹, Shuki Torii¹, Masao Yonemura¹, Tetsuro Ueno¹, Nobuhito Inami¹, Kanta Ono¹, Yinxia Wang³ and Takashi Kamiyama^{1,2}

¹IMSS, KEK.² Dept. of Mater. Struct. Sci., The Grad. Univ. for Adv. Studies. ³Coll. of chem. and Mol. Eng, Peking Univ.

Charge Transport Transition (CTT) is a kind of phenomenon demonstrating huge resistivity changes,, and has been widely observed in strongly correlated systems. The CTT in RBaCo₂O_{5.5+x} can be induced by temperature, pressure and also hole doping. Most of the effort has been focused on the temperature induced MIT of stoichiometric RBaCo₂O_{5.5}, which is accompanied by an anomaly in inverse magnetic susceptibility. This anomaly is generally attributed to the spin state transition (SST) of Co³⁺ ions. The competition between crystal field (CF), on-site Coulomb correlations, and the intra-atomic exchange energies leads to three possible spin states of Co³⁺ ions: the low spin state (LS, $t_{2g}^{-6}e_{g}^{-0}$), the intermediate spin state (IS, $t_{2g}^{-5}e_{g}^{-1}$), and the high spin state (HS, $t_{2g}^{-4}e_{g}^{-2}$). However, the crystal structure phase transitions coupling with the CTTs in RBaCo₂O_{5.5+x} are still in controversy and there is no consensus on the spin states below and above the transition temperature as well. Moreover, no satisfactory mechanism has been established for this system so far.

We conducted a multi-probe study PrBaCo₂O_{5.5+x} polycrystalline samples with a combination of diffraction techniques (electron, X-ray and neutron) and X-ray spectroscopies (XPS and XAS). On discovering some weak super lattice peaks, the Pmma $(2a_p \times 2a_p \times 2a_p)$ structure model of PrBaCo₂O_{5.5} in insulating phase by single crystal X-ray diffraction study is justified, and a new Pmmm $(a_p \times 2a_p \times 2a_p)$ structure model is constructed for hole doping sample, PrBaCo₂O_{5.5+x} in the high-conductivity phase. Through magnetic structure analysis on neutron powder diffraction data, we directly observed the existence of low spin-state Co³⁺ in PrBaCo₂O_{5.5} in low-conductivity phase and for the first time found hole doping induced spin state transition in RBaCo₂O_{5.5+x} system. It was finally recognized that the CTTs in PrBaCo₂O_{5.5+x} induced by both temperature and hole doping, are coupling with the *Pmma* $(2a_p \times 2a_p \times 2a_p)$ structure transition to *Pmmm* $(a_p \times 2a_p \times 2a_p)$, which caused by spin-state transition of Co³⁺ ions. Therefore, we propose a common scenario for the CTTs.